3点の座標から三角形の面積を求める公式|3点が原点を通る場合と原点を通らない場合

3点から三角形の面積を求める

坂田先生
ここでは、3点の座標から三角形の面積を求める公式2パターンについて手短に解説しています。
3点から三角形の面積を求める公式1
にゃんこ
3点のうち1点が原点を通る場合
3点から三角形の面積を求める公式
原点を通る三角形の公式の証明
にゃんこ
公式の証明を図解にしています。
坂田先生
重要なポイントは座標平面上における長さはすべて正の数なので、2点間の距離をとった場合、絶対値の記号をつけて計算表現しなければならない、という所です。
3点から三角形の面積を求める公式2
坂田先生
3点とも原点を通らない場合(後半、詳しく説明します)
原点を通らない3点から三角形の面積を求める公式
ご注意ください
にゃんこ
ただし、これらの公式を使いこなそうとした場合、絶対値の記号の外し方も同時に習得しておかないと解けない場合があります。

絶対値の記号の外し方の練習:絶対値の記号を外す問題:基本~難問

坂田先生
上の練習をしたあと、絶対値の記号を外すテクニックと、3点から三角形の面積を求める公式を使って、こちらの問題を解いてみてください。(別解:公式の利用の解法がそれにあたります)
公式を使う練習:二次関数のグラフ上に第3の点がある三角形の面積
にゃんこ
それでは以下、この2つの公式について詳しく説明していきます。

3点から三角形の面積を求める公式(原点を通る場合)

坂田先生
それでは公式の解説をしていきます。
にゃんこ
座標平面上の三角形の面積を求める際、頂点のどれからが原点を通る場合、以下の公式を使うことができます。
3点から三角形の面積を求める公式

坂田先生
これだとピンとこないと思いますので、具体的な数字を持ち出して解説します。

例題:3点(0、0)(5,-1)(2,8)を頂点とする三角形の面積を求めよ。

にゃんこ
公式に当てはめるとこうなります。
3点から三角形の面積を求める公式の例題1
坂田先生
内と内、外と外、なんていう説明の仕方をしていますが、比例式でもなんか聞いたことありますよね。
にゃんこ
ともかく、内と内、外と外をかけたもの同士を準備して、順番はいいから差をとって絶対値の記号をつける、と覚えておきましょう。
坂田先生
最後にそれを半分にして完了です。

3点から三角形の面積を求める公式(3点とも原点を通らない場合)

にゃんこ
続いて原点を通る点がない場合の公式です。
坂田先生
これは具体的な数値で最初の説明を聞いたほうがわかりやすいので、まずこれをご覧ください。

例題:3点(4、9)(7,6)(2,3)を頂点とする三角形の面積を求めよ。

にゃんこ
これはまず、各頂点のx座標を-2、y座標を-3して、点(2,3)が原点を通るように、3点をすべて平行移動させます。
坂田先生
そうすることで、さきほど学習した3点の頂点の座標から三角形の面積を求める公式を使えるようになります。
原点を通らない3点から三角形の面積を求める手順1
にゃんこ
このように、いちいち座標平面を書いて求めなければいけないかというと、そうでもありません。
坂田先生
例えば上と同じ頂点の座標を使って、次のように出題された場合、このように計算するとわかりやすいと思います。

例題:3点(4、9)(7,6)(2,3)を頂点とする三角形の面積を求めよ。

原点を通らない3点から三角形の面積を求める手順2

どうでしょうか。

3点(4、9)(7,6)(2,3)から

3点(2、6)(5,3)(0,0)へと

下準備をしてから計算すると、スムーズに三角形の面積を求めることができるかと思います。

にゃんこ
では、例題で練習してみましょう。

例題:3点(4、9)(7,6)(2,3)を頂点とする三角形の面積を求めよ。

3点から三角形の面積を求める問題の解説1

ここで疑問に思った方がいるかもしれません。

にゃんこ
どの点の座標を選んで引いても答えは同じになりますか?
坂田先生
はい、同じです。

例えばさっきの例題において、緑の点の座標を引いても答えは以下のように7となります。

3点から三角形の面積を求める問題の解説2
にゃんこ
さて、ここまで解いて、感覚をつかむことができてから、最初に紹介した『原点を通らない3点を頂点とする三角形の面積を求める公式』の解説図を見ると意味がわかりやすいです。
原点を通らない3点から三角形の面積を求める公式
にゃんこ
いきなり、最初からこんな説明を見るとわかりにくいですよね。
坂田先生
この公式に限らず、数学のテキストなんかには、いきなり抽象的な(一般化した)説明から始まっていて意味がわからないことがよくあります。
にゃんこ
そんなときは、今回のように、具体的に数値を代入して計算してみて、感覚をつかめてから公式を見るとわかりやすいことが多いです。
坂田先生
以上、3点の頂点の座標から三角形の面積を求める公式について解説しました。
にゃんこ
高校数学に限らず高校入試数学でも、場合によってはこの公式の威力が発揮される場面があります。必要な方は習得しておいてください。