円周角の定理の難問【円や半円の問題】中学数学~高校入試

円周角の定理の問題を難問まで

にゃんこ
ここでは、円周角の定理を使った図形問題を難問まで解説していきます。(後半ほど難問です)
このページの内容
  1. 円周角の定理を使う円や半円の問題|中学数学の定期テスト対策
    中学数学の定期テスト対策の範囲です。
  2. 円周角の定理を使う円や半円の問題|高校入試レベルの難問まで
    三平方の定理や面積比などもからめた、高校入試で見かける問題です。
広告

円周角の定理を使う円や半円の問題|中学数学の定期テスト対策

円周角の定理を利用した円の基本問題

次の図のように、点Oを中心とする円に内接する四角形ABCDがある。
∠CEDの大きさを求めよ。
円周角の定理を利用した基本問題

答え:∠CED=95°2通りの解き方を紹介します。円周角の定理を利用した基本問題の解説
補助線を利用する円の基本問題

次の図のように、円周上に点A,B,C,D,Eがあり、点Oは円の中心である。
∠AEBの大きさを求めよ。
円の問題標準レベルの問題

答え:50°円の問題標準レベルの解説1
円周角の定理を利用した半円の問題

次の図のように、ABを直径とする半円がある。
∠BFDの大きさを求めよ。
半円の問題5

答え:50°半円の問題5の解説1:平行線から錯角を利用する
2:半円に対する円周角は直角である。
3:円周角の定理を利用する。
この3つがポイントになります。
円の問題(方程式を使う)

円周上に点A、B、C、D、Eがある。
線分DBは∠CDAの二等分線
線分CEは∠DCAの二等分線
∠DAC=30°
のとき、∠EABの大きさを求めよ。円の問題1標準レベル

答え:∠EAB=105°
円の問題1標準レベルの解説2
円の問題(気が付きにくい円周角と中心角)

点Oを中心とする円周上に、点A、B、C、Dが次の図のようにある。
このとき、∠BACの大きさを求めよ。円の問題の難問01

答え:∠BAC=55°円の問題の難問01の解説
半円の問題(気が付きにくい円周角と中心角2)

線分CDを直径とする半円があり、点Oは線分CDの中点である。
また、半円上に点A、Bがある。
半円の標準問題01
(1)∠OBC=65°のとき、∠DABの大きさを求めよ。

答え:∠DAB=115°
半円の標準問題01の解説1
(2)∠DAB=120°、線分CD=10㎝のとき、∠OBCの大きさと線分BCの長さを求めよ。
答え:∠OBC=60°、線分BC=5㎝
半円の標準問題01の解説3
△OBCは正三角形なので、線分BCの長さは、線分OCの長さである5㎝と等しい。
よって線分BC=5㎝
円のやや難問問題(二等辺三角形の性質を利用)

点Oを中心とする円があり、次の図のようにABとODの交点を点Cとする。
弦ABの中点を点Cとし、∠ADC=70°とする。
このとき、∠OBAの大きさを求めよ。円の問題の標準レベル2

答え:∠OBA=50°円の問題の標準レベル2の解説二等辺三角形の性質を思い出し、それを利用するところが、慣れていないと難しいでしょう。
また、最後に円周角を倍にした大きさである中心角の値を求めていますが、意識しないと気が付きにくいポイントです。
~ポイント~
円の半径はどの線も長さが等しく、そこからできる二等辺三角形の性質を利用する問題です。
半円のやや難問(二等辺三角形の性質を利用2)

ABを直径とする半円がある。
点OはABの中点である。点DはACの中点である。∠BAC=20°である。
∠OEAの大きさを求めよ。(島根県)
半円の問題01

答え:55°

半円の問題の解説
坂田先生
この半円の問題は、∠ADOが直角であるということに気が付くところが一番難しいと思います。
にゃんこ
二等辺三角形の性質に『頂角の二等分線は、底辺を垂直に二等分する。』というものがあります。ここに着目します。
坂田先生
二等辺三角形の頂点を通り、底辺を二等分している線分ODは、二等辺三角形OACの底辺を垂直に二等分しているということに気がつくと∠ADOが直角であるということにたどり着けます。
この問題のポイントは、∠ADOが直角であるということを、どのようにして知るかという点です。

中点連結定理を利用できる図形である、ということに気が付くと糸口が見つかります。

半円の問題の別解あとは、最初の解法の通りに進めばOkです。

~ポイント~
別解に示したように、中点連結定理を利用する解法の2通りで解ける状態にしておきましょう。
広告

円周角の定理を使う円や半円の問題|高校入試レベルの難問まで

坂田先生
ここからは高校入試を想定して『三平方の定理』などをからめた、円や半円の問題を難問まで解説していきます。
円の問題(合同)

次の図において、点Oは円の中心である。
AB=AC
∠ABC=30°
である。
中学数学:円の問題オリジナル2(1)∠BOCの大きさを求めよ。

答え:∠BOC=120°
中学数学:円の問題オリジナル2の解説1このかたちは、どちら側の中心角の大きさが、円周角の2倍になっているのか、わかりにくい方も多いと思いますので、慣れておきましょう。
(2)四角形ABOCの周りの長さが4cmのとき、四角形ABOCの面積を求めよ。
答え: \(\dfrac{\sqrt{3}}{2}\)㎠
中学数学:円の問題オリジナル2の解説2
円の問題(垂線の求め方)

次の図において、点Oは円の中心であり
\(AB=9\) ㎝
\(BC=8\) ㎝
\(CA=7\) ㎝
線分ADは線分BCの垂線である。(早稲田実業高校)
高校入試数学の円の問題1(1)線分ADの長さを求めよ。

答え: \(3\sqrt{5}\)㎝
高校入試数学の円の問題1の解説1

(2)円の直径AEの長さを求めよ。

答え: \(\dfrac{21\sqrt{5}}{5}\)㎝

高校入試数学の円の問題1の解説2どの円周角とどの円周角が等しいのか気が付くのが難しい問題です。

円の問題(三角形の面積と角度)

半径がa(㎝)の円の中心とoとし、また円周上に点A,B,C,D,Eが以下のようにある。
このとき、赤色の部分の面積をaを使って表せ。
円の問題標準レベルの問題2

答え: \(\dfrac{\sqrt{3}}{4}a^{2}\) 円の問題標準レベルの問題の解説2
~ポイント~
円の直径がある問題の場合、円周定理により90°となる角度を利用する場合が多いです。そのような思考で、まず補助線を引いてみるクセを付けるといいでしょう。
円の問題(補助線の引き方)

次の図において、点Oは半径1の円の中心である。
また、∠ADC=120°である。
線分ABの長さを求めよ。中学数学:円の問題オリジナル1

答え:1
中学数学:円の問題オリジナル1の解説円の直径を両端とする弧に対する円周角(半円に対する円周角)は90°です。これを利用すべく補助線を引きます。
~ポイント~
円に内接する四角形の問題のように見えますが、これも先程と同じ補助線の引き方をすることで、よく知った問題だということが見えてきます。
半円の問題(弧の長さが等しい場合)

線分CDを直径とする半円があり、点A、B、C、D、Eが次の図のようにある。
半円の問題3
弧ABと弧BCの長さが等しく、AD=3㎝、OD=2.5㎝である。
このとき、線分AEの長さを求めよ。

答え:AE=1.5㎝半円の問題3の解説
半円の問題(面積)

線分ABを直径とする半円があり、ABの中点をOとする。
OB=BC=6㎝である。
赤い部分の面積を求めよ。
半円の問題:面積を求める

答え: \(12\pi -9\sqrt{3}\)(㎠)
半円の問題の解説:面積を求める
~ポイント~
このような問題の場合は、扇形の面積をとして求めるとしたら、どの部分のことだろうか?と考えてみます。中学数学では、曲線が含まれる図形の面積と言えば、円や半円や扇形の面積しか求め方を学習しないので、それらの組み合わせで問題が作られています。よって、そのような考え方を巡らせると有効です。
円周角の定理の逆を利用した三角形の問題

次の図において、∠EFDの大きさと∠DCEの大きさをそれぞれ求めよ。
円周角の定理の逆を利用した三角形の問題

答え:∠EFD=80°、∠DCE=50°
円周角の定理の逆より、次の図のように円に内接する三角形としてとらえることができます。
円周角の定理の逆を利用した三角形の問題の解説
~ポイント~
円周角の定理の逆を利用して、円に内接する図形を見出します。その練習になる問題です。
 
円と円周角の定理の難問(面積比)

点Oを中心とする半径3㎝の円がある。この円周上に、次の図のように各点がある。
BC=3㎝
CD=4㎝
BD⊥CEである。
円の問題オリジナル

(1)△BCEと△ACDの面積比を、最も簡単な整数の比で表せ。

答え:(△BCEと△ACDの面積比は)1:4円の問題オリジナル解説1

(2)△CDEの面積は△BCEの面積の何倍か。

答え: \(\dfrac{2}{5}\sqrt{15}\)倍
円の問題オリジナル解説2

(3)△ACDの面積は△CDEの面積の何倍か。

答え: \(\dfrac{2}{3}\sqrt{15}\)倍
円の問題オリジナル解説3改
円周角の定理を利用した面積比の難問

次の図において(1)~(4)の問いに答えよ。
円に内接する四角形の問題2
(1)四角形ABCDの面積を求めよ。

答え: \(1+\dfrac{\sqrt{3}}{2}\) (㎠)円に内接する四角形の問題の解説1

(2)△ABEと△DCEの面積比を最も簡単な整数の比で表せ。
また、△BCEと△ADEの面積比を最も簡単な整数の比で表せ。

答え:(△ABEと△DCEの面積比は)2:3
(△BCEと△ADEの面積比は)1:2
円に内接する四角形の問題の解説2

(3)△ABEと△ADEの面積比を表せ。
また、△BCEと△DCEの面積比を表せ。

答え:(△ABEと△ADEの面積比は)1: \(\sqrt{3}\)
(△BCEと△DCEの面積比は)1:\(\sqrt{3}\)
円に内接する四角形の問題の解説3

(4)△BCEの面積をaとする。このとき
△ABE、△ADE、△DCEの面積について、それぞれaを使って表せ。

答え:
△ABEの面積は \(\dfrac{2}{3}\sqrt{3}\)
△ADEの面積は2a
△DCEの面積は \(\sqrt{3}a\)
円に内接する四角形の問題の解説4
円の中心はどこか

下の図において、点Mは線分ACの中点である。
∠CBA=90°
∠CDB=90°
BC= \(\sqrt{3}\) (㎝)
AB= \(\sqrt{5}\) (㎝)
である。
(明訓高校)
明訓の図形問題1

(1)ACの長さを求めよ。

答え: \(2\sqrt{2}\) (㎝)
明訓の図形問題1の解説1

(2)BMの長さを求めよ。
答え: \(\sqrt{2}\) (㎝)明訓の図形問題1の解説2

(3)△BCDの面積を求めよ。

答え: \(\dfrac{3\sqrt{15}}{16}\) (㎠)明訓の図形問題1の解説3
半円の難問(面積比)

線分ABを直径とする半円がある。
\(AB=4\sqrt{5}\) ㎝
\(AD=4\) ㎝
△ADB∽△EDAである。(明訓高校)
半円の問題:明訓(1)BDの長さを求めよ。

答え:8㎝
半円の問題:明訓の解説1
よって \(BD=8\) ㎝

にゃんこ
半円の図形問題に三平方の定理を利用するこのパターンは頻出なので、この類の問題は即答できるように慣れておきましょう。
(2)△EDAと△ABEの面積の比を最も簡単な整数の比で表せ。また、△ABEの面積を求めよ。
答え:
(△EDAと△ABEの面積の比は)1:3
(△ABEの面積は)12㎠

半円の問題:明訓の問題第二問の解説

(3)△ECBの面積は△EDAの面積の何倍か?

答え: \(\dfrac{4}{5}\)倍
半円の難問:明訓の第3問の解説2
半円の難問(弧の長さが等しい)

線分ABを直径とする半円がある。
弧ADと弧CDの長さが等しい。
AB=10(㎝)
AD=6(㎝)
線分ACと線分BDとの交点をEとする。(熊本県:改)
半円の問題と面積比
(1)△ABEと△DBCの面積比を求めよ。

答え:(△ABEと△DBCの面積比は)25:16半円の問題と面積比の解説1
(2)線分AEの長さと、線分BCの長さを求めよ。
答え:AE= \(\dfrac{15}{2}\) 、BC= \(\dfrac{14}{5}\) 半円の問題と面積比の解説2
~ポイント~
弧の長さが等しい問題の場合は、その弧から成す円周角の大きさは等しいので、まずそのことを書き込んで、考える材料としましょう。
 
坂田先生
三平方の定理を使った円や半円以外の平面図形の問題を対策したい方はこちら↓をどうぞ☆
三平方の定理を使う平面図形の難問サムネ
にゃんこ
円や半円以外の、平面図形の応用問題が学習できます。
坂田先生
このページは以上です。